X
Christopher Cairo, PhD - Directory@UAlberta.ca

Christopher Cairo, PhD

Professor, Faculty of Science - Chemistry
Associate Chair, Faculty of Science - Chemistry

Contact

Professor, Faculty of Science - Chemistry
Email
ccairo@ualberta.ca
Phone
(780) 492-0377
Address
4-082 Centennial Ctr For Interdisciplinary SCS II
11335 Saskatchewan Drive NW
Edmonton AB
T6G 2H5

Associate Chair, Faculty of Science - Chemistry
Email
ccairo@ualberta.ca

Overview

Area of Study / Keywords

glycobiology medicinal chemistry carbohydrate chemistry bioconjugate chemistry


About

BSc, State University of New York - Albany (1996)

PhD, University of Wisconsin - Madison (2002)

NIH PDF, Harvard Medical School (2006)


Research

Research In the Lab

Cell surface receptors mediate the transfer of information between cells and their environment. As a result, receptors play vital roles in all aspects of cell biology including development, immune response, homeostasis, and pharmacology. Although many receptor systems have been intensely studied, fundamental questions about their molecular function remain unanswered. Research in our group uses chemical biology to improve our mechanistic understanding of membrane biology and develop new tools for therapeutic strategies. Specific areas of research include:

Membrane Glycobiology

Glycolipids and glycoproteins are a critical components of the plasma membrane. In addition to biosynthetic pathways, glycan content is regulated by glycosyl hydrolases. Our group has been investigating the role of the membrane-associated neuraminidases (NEU; also called sialidases). 

Using recombinant forms of NEU enzymes we have developed structure-activity relationships for inhibitors and substrates of human NEU isoenzymes (NEU1, NEU2, NEU3, NEU4). Using this approach, we have developed specific inhibitors with excellent selectivity for individual enzymes. Work is currently focused on improving these compounds for therapeutic applications.

Current projects are investigating the role of NEU enzymes in cell migration, cell adhesion, and inflammation. 

Bioconjugate strategies

Synthetic strategies for controlled modification of biomolecules in vitro or in cells is a rapidly evolving area of chemical biology. Our group is interested in the development and application of new labeling strategies that provide access to modified lipids, glycolipids, proteins, and glycoproteins. We have previously used metabolic labeling as well as chemical and chemoenzymatic synthesis for these systems.

Current projects in the group are applying chemoenzymatic and bioconjugate strategies to unusual glycoproteins.

Phosphatase inhibitors

Phosphatase enzymes are the biochemical antithesis of kinases – removing phosphate groups from proteins and other biomolecules. While kinases have become a common target for drug development, phosphatases have seen limited applications in medicinal chemistry. Our group previously developed a modular strategy for designing protein tyrosine phosphatase inhibitors using solid-phase peptide synthesis (SPPS). We have also applied similar chemical strategies to glycosyl phosphatase substrates important for diabetes.

Current projects in the group are testing the utility of alpha-bromobenzyl phosphonates in the structural biology of PTPase enzymes.

Courses

CHEM 454 - Bioconjugate Chemistry

Discussion of organic reactions to modify or label biopolymers including proteins, carbohydrates, and nucleic acids. Topics will include mechanistic and methodological details of commonly employed reactions used for chemoselective labeling or modification of biomolecules to produce synthetic vaccines, antibody-drug conjugates, and native chemical ligation will be discussed. Prerequisites: CHEM 351 or BIOCH 200; CHEM 361. Note: This course may not be taken for credit if credit has already been received in CHEM 464.


CHEM 554 - Bioconjugate Chemistry

Graduate-level discussion of organic reactions to modify or label biopolymers including proteins, carbohydrates, and nucleic acids. Topics will include mechanistic and methodological details of commonly employed reactions used for chemoselective labeling or modification of biomolecules to produce synthetic bioconjugates. Applications including synthetic vaccines, antibody-drug conjugates, and native chemical ligation will be discussed. Prerequisite: 1 year of introductory organic chemistry and 1 term of biochemistry, or consent of instructor. Not open to students with credit in CHEM 464 or 564.


Browse more courses taught by Christopher Cairo